2. 简洁。
一个伟大的方程具有日本书法般的简朴美感,囊括其中的只有其核心精华。它所叙述的是简单而作用重大的事物。
3. 能够产生重大效果。
我放弃了几个我认为优美而又发人深省的方程,因为它们最终只能进入寥寥几位鉴赏大家的法眼。让人留下最深刻印象的方程是那些让数学发生了革命性变化、改变了我们对世界的看法或者改变了我们物质生活的方程。
4. 具有普遍意义。
数学的最大吸引力之一是:一个今天证明为真的方程将永远如此,它不受时尚潮流的影响,它放之四海而皆准,它不受审查删改或者立法控制。
本书呈献的一些方程并非数学定理,而是物理“定律”或理论,如麦克斯韦方程。物理学理论通常是通过数据归纳或“科学方法”证实的,而不是从某套公理推导而来的。与数学定理不同,它们需要经过经验证据和统计检测确认,而且有时候,更为精确的实验会证明它们并非完美。
事实上,数学具有两重性。首先,它是因其本身而存在的一个知识体系;其次,它是表达宇宙知识的一种语言。如果你仅仅把方程视为传递科学信息的一种工具,那你就看不到数学解除我们头脑束缚的方式;如果你仅仅把方程视为智慧的结晶,那你就看不到自然对我们求索“正确”问题的微妙指引。
19世纪德国数学家利奥波德·克罗内克曾说:“上帝创造了整数,其他的都是人类的贡献。”尽管我们并不完全清楚应该在多大程度上接受他的这一名言,但在历史上提出数学的神灵起源的绝非仅此一人。古代美索不达米亚人认为,数学是书吏守护女神尼沙巴的礼物。公元前20世纪的一位书吏这样写道:“尼沙巴是一位喜气洋溢的女性、一位真诚的女性、一位女性书吏、一位通晓万事的女性;她指引着我们,把着我们的手指在陶土上
书写。测量杆、闪光的测量员之线、码尺和带来智慧的写字板,这些都是尼沙巴的慷慨赠品。”在巴比伦的数学写字板上,只有当问题解答者在答案结尾处写下“赞美尼沙巴!”时,该问题才算解答完毕。
古代中国人认为,数学的创始人是伏羲,传说中中国的第一位皇帝。人们经常把他描绘为手拿一把矩尺的人。3世纪的数学家刘徽写道:“远古时代,伏羲创造了能与神灵沟通的八卦。”他还说,伏羲“发明了管控六十四卦变化的九九算法”。“八卦”和“六十四卦”是中国书法的基本单位,因此,这基本上等同于将文字的发明归功于伏羲;而“九九算法”指的是乘法表。于是,数学并不仅仅是神灵的启迪,而是与文字一起由神灵发明的。
在这些说法中,我们已经可以认出从那时起便源远流长地发展着的三大数学支流。第一大支流为算术或代数,是数量的科学;第二大支流为几何,是形体的科学;第三大支流为应用数学,是将数学转化为解决工程学、物理学和经济学实际问题的手段的科学。